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Planetary Delay-Doppler Radar and the
Long-Code Method

John K. Harmon

Abstract—Delay-Doppler mapping continues to be the most
widely used imaging technique in radar astronomy. Various
methods have been devised to partition echoes in delay-Doppler
space for different degrees of echo dispersion (as quantified by the
overspreading factor F'). These include the standard interpulse/in-
tercode methods for underspread (F' < 1) or slightly overspread
(F' > 1) echoes, intrapulse methods for grossly overspread echoes,
and the long-code method for the intermediate case of moderate
overspreading. Here the standard and long-code methods are
compared, treating various aspects of experiment design, data
analysis, and calibration. Recent and future applications of the
long-code method are also reviewed.

Index Terms—Coding, delay-Doppler mapping, planetary
radar, pulse compression, radar.

I. INTRODUCTION

ELAY-DOPPLER mapping is an essential tool of radar

astronomy. Forty years after its first successful demon-
stration [1], delay-Doppler mapping is still the most widely used
imaging technique in the field. (Its only serious rival has been
synthesis imaging with the Goldstone/Very Large Array (VLA)
system [2], [3].) The continued utility and success of delay-
Doppler imaging owes much to improvements in radar tele-
scopes and systems, as well as to new developments in wave-
form selection and mapping.

The power of delay-Doppler mapping derives from its ability
to image an echo at a resolution much finer than is possible with
the real-aperture beam of the antenna. It does this by a two-step
process.

Step 1) Partitioning the echo from a deep, fluctuating target
into cells in delay-Doppler space.
Step 2) Mapping from delay-Doppler space into the target’s
natural (real-space) coordinates.
Thebasic method bears some similarity to synthetic aperture radar
(SAR) and, in particular, to those techniques often referred to as
“inverse SAR” (ISAR) and “spotlight SAR” [4]-[6]. In its prac-
tical implementation,however, planetary delay-Dopplerimaging
isusually much simpler than SAR imaging,as it normally ignores
sucheffectsasrange walk and range curvature (anexceptionbeing
the SAR-like mapping of the moon by Stacy [7]).
Despite this relative simplicity, planetary delay-Doppler
imaging is beset by certain fundamental problems, the solutions
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to which are by no means trivial. The toughest challenge con-
fronting echo partitioning is the avoidance of delay folding and
Doppler aliasing of the highly dispersed echoes from “over-
spread” targets. (This is related to the familiar “ambiguity”
problem encountered in SAR imaging.) The mapping step from
delay-Doppler to real space can also be problematic. Although
relatively insensitive to the SAR “layover” effect, planetary
mapping is subject to a more serious global mapping ambiguity
about the Doppler equator, often called the “north—south am-
biguity.” Apart from this, delay-Doppler reflectivity mapping
of large, nearly spherical planets is a simple mathematical
problem [8]. This is certainly not the case for small, irregular
targets such as near-earth asteroids, for which the determination
of shape and spin-state has to be part of the mapping solution.
The mapping of such objects is a daunting task and one that is
resistant to systematic algorithms, although some success has
been achieved using least squares inversion methods [9].

Although the mapping problem is interesting per se, this
paper is concerned only with echo partitioning. The purpose
here is to discuss the current state of the delay-Doppler parti-
tioning problem and to present a more thorough treatment of
the long-code method, which was developed for delay-Doppler
imaging of overspread targets such as Mars [10], [11]. We begin
with a brief survey of the different methods used to measure the
delay-Doppler array, so as to place the long-code method in its
appropriate context. This is followed by a detailed comparison
of the standard and long-code methods, addressing technical
issues such as data acquisition and analysis, filtering, noise
and clutter optimization, and calibration. The paper concludes
with a discussion of some recent and future applications of the
long-code method.

II. SURVEY OF DELAY-DOPPLER METHODS

The first objective in designing a delay-Doppler experiment
is to partition the target echo (or some suitable portion of it)
into delay-Doppler cells with a minimum of distortion. Different
methods have been devised over the years to do this. The most
important factor dictating the choice of method is the degree
of dispersion of the echo, as quantified by the overspreading
factor F' = T'B (where T is the target’s delay depth, and B is its
Doppler bandwidth). Targets are said to be either “underspread”
if F' < 1 or “overspread” if F' > 1. For a spherical planet of
radius 7 and apparent rotation period ¢,., one has T' = 2r /¢ and
B = 8wrv|sin«|/ct,, giving

F =167r%v|sin a|/c?t,

=6.47 x 107572 (km)v(GHz)|sin «| /t,.(days) (1)
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TABLE I
ECHO DISPERSION FACTOR F AT v =2.4 GHz

Target F
Mercury 1.1-1.7
Venus 1.3-4.2
Moon 0.7
Mars 170
Ceres 9
Pallas 4
Kleopatra 0.5
Toutatis 103
Castalia 104
To 29
Europa 11
Ganymede 15
Callisto 5
Titan 6

Saturn Rings  10°

where v is the radar frequency; c is the speed of light; and « is
the angle between the apparent rotation axis and the line of sight.
Solar system targets span a wide range of F', which explains why
no single delay-Doppler method handles all applications. Table I
lists F values at S band (v = 2.4 GHz). Table II shows a break-
down of the various methods by F'-range and radar type. This
is intended as a rough guide only; in practice, and historically,
the method boundaries are blurred, as is discussed below. The
field of ionospheric incoherent scatter radar (ISR) faces echo
dispersion problems similar to those encountered in radar as-
tronomy, for which it has developed a suite of methods similar
to those in Table II; the long-code method was, in fact, borrowed
directly from ISR. For a discussion of delay-Doppler methods in
ISR, see [12] and [13]. For a survey of planetary delay-Doppler
methods before the advent of long-code, see [14].

A. Standard (Interpulse/Intercode) Method

Interpulse and intercode delay-Doppler (Table II), which we
will refer to collectively as the “standard method,” was the first
delay-Doppler method to be developed and is still the most com-
monly used. One transmits either a coherent train of identical
pulses, if using a pulsed radar, or a coherent sequence of re-
peated codes, if using a continuous wave (CW) radar. (In pulsed
radar, one can also code within the pulse, although this is rarely
done in planetary radar.) At any given delay, samples from suc-
cessive pulse repetition cycles (or decoded code cycles) are then
summed coherently with various phase rotations (i.e., Fourier
transformed) and squared to produce a Doppler spectrum for
that delay. The collection of these spectra for the various delay
bins comprises a two-dimensional array of echo power in delay-
Doppler space. The sampling interval for the spectral analysis
is the pulse or code repetition period p, which gives a spectral
bandwidth of 1/p. Hence, the full delay-Doppler echo can be
recovered without delay folding (p > T') and Doppler aliasing
(1/p > B) only if the echo is underspread (TB = F < 1).

The standard technique was conceived by Green [15] and
first tested by Pettengill [1] in moon observations with the ul-
trahigh-frequency (440-MHz) pulsed radar at Millstone Hill.
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TABLE 1I
DELAY-DOPPLER METHODS BY F'-REGIME AND RADAR TYPE (PULSED, CW)
F Pulsed cw
<1 interpulse intercode
(underspread) (coherent pulse train) (cohe;zr;ltuce%dce‘se )
>1 coded long pulse long code
(overspread)
intrapulse
>> 1 frequency step
(long pulse)

Delay-Doppler imaging of the moon was continued over the
next decade at Haystack and Arecibo. Standard delay-Doppler
has also been used with great success to image Venus, beginning
with Goldstone observations [16] and culminating in the high-
resolution imaging with the Arecibo S band radar [17]. Stan-
dard delay-Doppler has been used to image Mercury’s equato-
rial regions [18], [19] and putative polar ice deposits [20]. Stan-
dard delay-Doppler cannot be used to image the highly over-
spread Mars, although template fitting to the leading edge of
the delay-Doppler echo has been used to measure Martian to-
pography and quasi-specular scattering parameters along the
Doppler equator [21]-[23]; the same technique has been used
to measure equatorial topography on Mercury [18], [19], [24],
[25]. The past decade has also seen some successes in radar
imaging of near-earth asteroids with standard delay-Doppler
[26]-[28].

B. Intrapulse Methods

Intrapulse (or long-pulse) methods offer an alternative delay-
Doppler approach for highly overspread objects. Here, as in
standard pulsed delay-Doppler, one uses a pulse train with an
interpulse period longer than the target delay depth (p > T') to
avoid delay folding of the echo. The difference is that one then
does the coherent analysis only within the pulse, the Doppler
spectra from successive pulse cycles being summed incoher-
ently (for each delay). An analogous method has been devel-
oped for CW radar that uses cyclic stepping of the transmitter
frequency to synthesize pulses. In this case, the frequency dwell
time corresponds to the pulse width, and the cycle time of the
frequency step sequence corresponds to the interpulse period
p. Frequency aliasing is avoided by making the frequency step
larger than the target bandwidth B. Since the frequency resolu-
tionis Af = 1/At, where At is the pulse width, the maximum
number of delay-Doppler cells into which one can resolve the
overspread echo is (B/Af)(T/At) =TB = F.

Intrapulse mapping of Mars has been done with the 430-MHz
pulsed radar at Arecibo [29], albeit with very coarse resolution
owing to the relatively small F' at this frequency. Saturn’s rings,
being much more highly overspread, are better suited to this
method. Frequency-step delay-Doppler mapping of the rings
was done with the S band CW radars at Arecibo and Gold-
stone in 1976 [30], and again very recently using the upgraded
Arecibo S band radar [31].
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C. Long-Code Method

Although the standard and intrapulse methods were suitable
for many radar astronomy applications, there had always been
a need for a way to deal with targets (notably Mars) in the in-
termediate F' regime. An analogous situation existed in iono-
spheric ISR, where interpulse and intrapulse methods could be
used on the lower and upper ionosphere, respectively, but were
ill suited for intermediate altitudes [12]. The ISR techniques
devised to fill this gap include the “coded long pulse” (CLP)
method of Sulzer [12], [13] and the “alternating code” method
of Lehtinen and Héaggstrom [32]. In the CLP method, one trans-
mits a long (nonrepeating) code. Then, instead of doing the stan-
dard cross-correlative decoding to obtain each sample of the
time series for the spectral analysis, one does the spectral anal-
ysis directly on the lagged-product time series of the signal and
code; in effect, the decoding and spectral analysis are done in
the same operation. The code’s baud length b then defines both
the delay resolution and the sampling interval for the spectral
analysis, permitting one to recover an overspread delay-Doppler
array without delay folding or Doppler aliasing. This comes,
however, at the expense of some added clutter noise from the
unwanted delays. It was realized that the CLP technique could
be adapted for mapping overspread targets in radar astronomy.
Hagfors and Kofman [33], [34] proposed a scheme based on
the CLP principle and using Gaussian noise modulation. At the
same time, Harmon and colleagues [10] developed a system
for the Arecibo S band radar based on long pseudonoise phase
codes. This CW-radar version of CLP has become known as
the “long-code” method. The method was first tested at Arecibo
during the 1990 Mars opposition [10], [11]. It has since been
used for imaging Mercury [35]-[39], ranging and imaging the
Galilean satellites [40], [41], and imaging the main-belt aster-
oids Kleopatra [42] and Ceres [43]. Since the baud must satisfy
1/b > B to avoid Doppler aliasing, one is constrained to have
T/b > F delay bins on the target, making this method unsuit-
able for grossly overspread targets such as Saturn’s rings (owing
to the low detectability of such finely divided echoes).

III. STANDARD AND LONG-CODE METHODS: A COMPARISON

A. Radar Systems and Experiments

1) Standard: The schematic in Fig. 1 shows the basic
elements of a radar system suitable for either standard or
long-code delay-Doppler experiments. A typical experiment
involves transmission of a modulated wave with circular
polarization. In CW pulse compression, one normally uses a
hardware device to generate a binary phase code according to
a pseudonoise (PN) maximal-length shift-register sequence of
length L. = p/b = 2™ — 1 (integer n), where the phase flip in-
terval (or “baud”) b equals the desired width of the compressed
pulse. In standard intercode delay-Doppler, the code repetition
period p is set long enough to avoid or minimize delay folding
but short enough to avoid or minimize Doppler aliasing.

A typical delay-Doppler receiver is a two-channel system that
receives both the “expected” or “polarized” sense circular (also
called “OC” for “Opposite Circular”) and the “unexpected” or
“depolarized” sense circular (or “SC” for “Same Circular”).
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Fig. 1. Block diagram of a typical radar system suitable for either standard or
long-code delay-Doppler observations.

The intermediate-frequency (IF) mixing is done with a pro-
grammable local oscillator whose frequency is continuously
adjusted from a precomputed ephemeris to compensate for the
target’s mean Doppler offset and drift; a similar compensation
is also applied to the stretch and drift of the sampling time
base. Detection is done with a quadrature baseband mixer, so
Doppler spectra are two-sided with zero center frequency. The
in-phase and quadrature outputs are passed through matched
filters (matched to the baud), digitized, sampled (at least once
per baud), and recorded for later analysis.

2) Long-Code: Although long-code experiments use the
same basic system elements (Fig. 1) as the standard method,
there are a few operational differences. One important dif-
ference is in the transmission coding. Whereas the standard
method uses a repeating PN code, the long-code method uses
a nonrepeating code to ensure randomness of the self-clutter.
Hagfors and Kofman [33] proposed using phase and amplitude
modulation with Gaussian noise. However, biphase coding
is easier to implement on existing radars and less affected
by “same-delay clutter” than is phase-amplitude modulation.
Arecibo CLP observations of the ionosphere do the biphase
modulation using a hardware-generated PN code whose
repetition period p is set to be longer than the integration
period to ensure randomness of the clutter statistics [12].
This same coding technique has been used for the Arecibo
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long-code planetary radar observations. The only difference
is that long-code observations with the S band CW radar
employ a coded continuous transmission, whereas CLP ob-
servations with the 430-MHz pulsed radar use coded pulses;
an implication is that the coherent integration time is limited
to the pulse length for CLP, but can be as long as the echo
round-trip time for long-code. Although code generation from
random number generators is preferred over the shift-register
method for long-code experiments, it is impractical, owing
to limitations in real-time computer speed and memory. For-
tunately, subsequences of long shift-register PN codes have
been found to provide good approximations to random codes,
as has been proven by simulation. The main drawback of
shift-register coding employing feedback is that any system
phase errors (as from transmitter ringing or unbalanced mixers)
can introduce spurious correlations that show up as oscillations
in the self-clutter spectrum at certain discrete delays in the
transmission’s ambiguity function. However, simulations show
that this problem is peculiar to codes with two feedback taps
and that the oscillations are virtually eliminated by using
four-tap codes.

For most long-code applications, one can use the same
matched-filtered receiver system and sampling rate (once per
baud) as that used in standard delay-Doppler. An exception
might be for long-code observations of highly overspread tar-
gets (e.g., Mars), where it may be preferable to run with a wider
(unmatched) filter and denser (multisample/baud) sampling in
order to reduce the filter-mismatch effect (Section III-C).

B. Decoding and Spectral Analysis

1) Standard: The analysis process used in standard inter-
code delay-Doppler is illustrated in Fig. 2(a). The first step is
decoding. Here one cross-correlates the data time series with
the code, yielding a cross-correlation function (CCF) for each
code cycle. The CCF calculation can be done efficiently using
fast-correlation techniques based on the convolution theorem.
(These employ long transforms over multiple code cycles, along
with standard end-effect corrections [44].) At this point, the data
are arranged as a stack of (complex) signal voltage-versus-delay
profiles from successive code cycles. The coherent (spectral)
analysis then consists of doing complex fast Fourier transforms
(FFTs) across the stack, with one FFT for each delay. Taking
the squared modulus then gives a real Doppler power spectrum
for each delay. Since the sampling interval for the spectral anal-
ysis is the code cycle period p, each Doppler spectrum has a
bandwidth of 1/p or a Nyquist frequency fx = 1/2p. Also, the
spectrum has a frequency resolution of Af = 1/L;p, where
L, is the FFT length in code cycles. Each delay-Doppler array
estimate, or “look,” represents a single statistical realization of
the echo (plus noise) power distribution in delay-Doppler space.
One then beats down the statistical fluctuations by doing an in-
coherent summation of the delay-Doppler arrays from succes-
sive looks over some suitable integration time ¢;,,¢ . Examples of
OC and SC delay-Doppler arrays from a standard-code obser-
vation of Mercury are shown in Fig. 3(a) and (b).

2) Long-Code: The differences between the long-code and
standard intercode analyses are seen by comparing Fig. 2(a) and
(b). In long-code there are no repeated code cycles, nor does
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Fig. 2. Schematic illustrating the basic principles of delay-Doppler analysis
for (a) the standard method and (b) the long-code method.

Fig. 3. Delay-Doppler arrays for Mercury obtained with the Arecibo S
band radar. (a) Standard method, OC polarization. (b) Standard method, SC
polarization. (¢) Long-code method, OC polarization. (d) Long-code method,
SC polarization. The vertical axis is delay (increasing toward the bottom), and
the horizontal axis is Doppler. The delay axis extends 17 ms, and the Doppler
axis extends (a), (b) 48.9 Hz or (c), (d) 101 Hz. The echo Doppler bandwidth B
was either (a), (b) 85.1 Hz or (c), (d) 88.3 Hz. The standard-code observation
was made on July 3, 1999 (sub-earth point at 7.6°N, 357.9°W). The long-code
observation was made on June 16, 2000 (sub-earth point at 6.2°N, 358.2°W).
The baud b was 20 p in both cases. The echo’s leading edge is at top; the polar
“ice” spots are at bottom center,; and the bright rayed crater called feature “A”
is in between. The OC image grayscale is normalized to the polar features, so
the leading edge specular echo is saturated.

one do a standard pulse-compression decode on any segment
of the data time series (as this would impose a lowpass fil-
tering on those high frequencies in the Doppler spectrum that
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one wishes to recover). Instead, a lagged-product time series is
formed for a given lag (or delay) by multiplying the sampled
signal by the suitably lagged code, and then the power spectrum
of this lagged-product time series is computed directly. (This is
equivalent to multiplying the data time series by e~*>*/* and
then cross correlating with the code, for each Doppler f.) One
then builds the delay-Doppler array by performing this opera-
tion for the various lags, changing the lag in one-baud steps. The
delay-Doppler arrays from successive looks are then summed
incoherently to improve echo detectability. If sampling once per
baud, then the Doppler spectra will have a bandwidth of 1/b
(f~ = 1/2b), which can be set to be wider than the echo band-
width to avoid Doppler aliasing. Also, since there are no re-
peated code cycles, there is no problem with delay folding of
the echo. The frequency resolution of the delay-Doppler array
is Af = 1/L;b, where L, is the transform length. Examples of
delay-Doppler arrays from a long-code observation are shown
in Fig. 3(c) and (d). These were obtained at a sub-earth aspect
close to that of the standard-code observation of Fig. 3(a) and
(b). Note the lack of aliasing of the overspread Mercury echo in
the long-code images, in contrast to the standard method.

The main drawback of long-code compared to standard
delay-Doppler (i.e., the price paid for doing the decode and
spectral analysis in the same operation) is that, for any given
lag, the echo power from the other “wrong” (unsynchronized)
delays is not subject to the strong filtering inherent in standard
decoding. Instead, this power appears as a noise-like self-clutter
(Section III-D) that, when added to the receiver noise, raises
the overall background noise level.

Another drawback of the long-code method is the relatively
slow data processing. In the standard method one does an effi-
cient fast-correlation decode followed by an FFT (at each delay)
on what amounts to a greatly decimated time series, whereas
long-code must do an FFT on a lagged-product time series sam-
pled at the baud rate. (One could convert this to a fast-correla-
tion problem by doing inverse FFTs of lagged products in the
transform domain, but this is more efficient only if one wants
fewer Dopplers than delays.) Fortunately, for many overspread
targets the echo bandwidth is still much less than the inverse of
the baud (B < 1/b), in which case one can smooth and deci-
mate the lagged-product time series before transforming, short-
ening the FFT length and substantially reducing computation
time. (If » is the time-series length and one does an m-point
smoothing and decimation, then the number of operations in-
volved in processing each lag goes from 2n log,(n) + n down
to 2(n/m)logy(n/m) +n.) A simple boxcar smoothing is pre-
ferred, as it has the attractive property of maintaining the white-
ness of the noise-plus-clutter background. As an example, the
Mercury delay-Doppler arrays plotted in Fig. 3(c) and (d) were
computed using a 256-point smoothing and decimation of the
lagged-product time series. Continuing improvements in com-
puter speed have also been a substantial help, making virtu-
ally all long-code data analysis problems practicable for desktop
computers.

C. Signal, Noise, and Filtering

The end result of the foregoing standard or long-code
echo processing is an estimated delay-Doppler array
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Ai; = A(m, fj), where A;; has units of power and
where 7; and f; are the delay and frequency at the center
of delay-Doppler cell ¢, 5. This array can be written as

Aij = 8ij + Nij +Cij 2)

i.e.,as the sum of contributions from echo signal S, system noise
N, and self-clutter C'. Signal and noise are discussed here, with
clutter left to Section III-D. Here we will treat S, N, and C im-
plicitly as expectation values of statistically fluctuating quanti-
ties. Later (Section III-E) we will consider the effect of noise and
clutter fluctuations on echo detectability. Fluctuations in signal
S, associated with “speckle” or “fading” noise, will not be con-
sidered here.

1) Standard: The echo power estimate S;; can be expressed
in terms of the true differential echo power distribution S’ (7, f),
which is the power per unit delay and Doppler from a target
surface element with delay 7 and Doppler f. The differential
contribution S7;(7, f) to S;; from a point echo at 7, f is given
by (see Appendix I-A)

Z |X(Ti —T—= kp7 f)|251(7—7 f) (3)
k

where
x(7, f) = A(7/b) sinc([b — |7|] f) ™7 (4)

is the single-pulse ambiguity function (Fig. 4) and
sinwLz >
) 5

Lsinmx

H(L, z) = (

Other symbols (in Bracewell’s [45] notation) are the tri-
angle function A(z) = 1 — |z| (=0 for |z|] > 1) and
sinc(z) = sinwz/mx. The k-summation represents a delay
ambiguity from the repeating code and accounts for any delay
folding of the echo, while the H(L;, p[f — f;]) factor repre-
sents a Doppler ambiguity, accounting for any Doppler aliasing
and defining the frequency resolution window. Assuming there
is no delay folding (fix & = 0) or Doppler aliasing, and given
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that f < 1/b, then the H functions approximate to sinc?

functions, and we have

Sq{,j(Tv f):KZ]( f)Sl( f) (6)

where
Kij(r, ) = sinc®(pf) sinc®([f—f;]/Af) Ix(mi=7, > (D)

and Af = 1/L;p is the frequency resolution. Then, integrating
over 7, f (assuming incoherence of adjacent regions on the

planet) gives
fdrdf= // Ki;(r

Sij= //Sfj(T

which, given the narrowness of the sinc?( f/Af) function, can
be approximated by

T f)drdf (8)

Sij ~Y;Z; S bAS )

where S ! is the weighted average

BESLL

S II K i
Equation (9) conveniently expresses S;; as a filtered version of
Si; . b A f,which is the equivalent echo power from a rectangular

cell measuring b x Af. The filter factors are a “code filter”
Y; = Y(f;) and a “baud filter” Z; = Z(f;), where

Y (f) = sinc?(pf)

f)drdf
Ydrdf

(10)

(1)

and

5 [ e

The code filter Y expresses the lowpass filtering inherent in the
decoding process, while the baud filter Z accounts for signal
reduction by the delay and Doppler mismatches between an
echo element and our matched-filter processor. The convenient
Fourier transform identity for Z in (12) is derived in Appendix
II. In most standard delay-Doppler, one has f < 1/b; so the
Doppler mismatch is negligible, and the baud filter can be ap-
proximated by the constant factor

HPar=1 / A2(7/B) =277 4. (12)

1 2
Z:E/A (rfh)dr=".

This represents the delay mismatch averaged over the resolution
cell. It is important to include this factor when calibrating for
radar cross section (see Section III-F).
The background noise power is
delay-Doppler space with a mean level of

(13)

a flat pedestal in

N =N,Af (14)

where N, is the noise spectral density (noise power per unit fre-
quency). Hence, one can estimate S by simply subtracting a flat
noise baseline, although care must be taken when the self-clutter
C is significant (Section III-D). Another property of the noise
component NN is that its statistical fluctuations are uncorrelated
between adjacent delay bins; this is important to note when
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doing delay smoothing of an overresolved delay-Doppler array
(Section III-E). Finally, dividing (9) by (14) gives a signal-to-
noise ratio

Sii Si.b
(S/N)1]EW]:Y;Z]<Z\; > (15)
2) Long-Code:

pendix I-B)

Sz{j(’n f) (Lt7 [f fJ])|X(Ti_T7 f)|2Sl(Tv f)

Note that there is no code-cycle ambiguity as in the standard
case. This is a very useful property, as it not only ensures
there will be no echo folding in delay, but also enables one
to avoid the modulo-p code cycle ambiguity in obtaining
absolute ranges to targets with uncertain delay ephemerides.
(In standard delay-Doppler, this range ambiguity is usually
resolved by measuring the change in echo offset within the
delay window when the baud is changed slightly.) Assuming
there is no Doppler aliasing, then the H function approximates
to a sinc? function, and we have

The long-code equivalent of (3) is (see Ap-

(16)

Si; = Z; S’ bAf. 17)
From (17), we also see that there is no code filter Y'; this
accounts for the strength of the high-Doppler wings in Fig. 3(c)
and (d) when compared with the weaker, aliased wings in
Fig. 3(a) and (b). Another difference with the standard case is
that the baud filter Z can have a nonnegligible effect for highly
overspread echoes with Doppler bandwidths approaching 1/b.
This filter-mismatch effect (associated with the mismatch
between the baseband matched filter and the Doppler-offset
echo) attenuates echo power at higher Dopplers, as can be
calculated from the Fourier transform in (12). It also flattens
the peak of the ambiguity function somewhat, although |x| is
well behaved in that it is still unimodal at the 1/2b Nyquist
frequency and remains 2b wide at the base (see Fig. 4). If the
filter-mismatch effect of Z is considered too strong, it can be
reduced by shortening the baud or by running in unmatched
mode. (The latter can be done by using an n-times-wider filter
and then sampling and decoding with n samples per baud.)
Finally, note that there will be an additional sinc?(mbf) filter
if one does an m-point boxcar smoothing and decimation of
the lagged-product time series as discussed in Section III-B.
For the usual case of once-per-baud sampling and decoding,
the noise component has the same flat pedestal form with N =
N, Af as for the standard method. The corresponding S/N is

(S/N)ij = Z; (if;f) ~

(18)

As in the standard case, the noise statistics are uncorrelated be-
tween different delays.

D. Self-Clutter

Here we adopt Rihaczek’s [46] term “self-clutter” to denote
the stray power contribution from either echo leakage into pulse
compression sidelobes (standard) or “wrong-delay” clutter
(long-code).
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1) Standard: The function given in (4) only represents the
central spike of the ambiguity function of a PN code. At zero
Doppler, | x|? takes a “thumbtack” form, with a A2 central spike
and a flat pedestal of height 1/L? at all other delays. Were
this thumbtack shape to hold at all frequencies, the self-clutter
from convolution of the echo with the pedestal would only
contribute a flat component to the delay-Doppler array. How-
ever, away from zero Doppler this simple thumbtack shape no
longer holds, as the pedestal breaks up into messy sidelobes
whose peak amplitude increases with Doppler [47], [48]. Echo
leakage into these sidelobes can be a nuisance when doing
delay-Doppler on echoes with high dynamic range, and also
complicates noise baseline subtraction. The effect is clearly
seen in Fig. 3(a), which shows visible streaking from leakage
of the strong leading edge of Mercury’s OC specular echo into
the other delays. Several techniques exist for suppressing such
sidelobes or their effects. These include deconvolution of the
corrupted delay-Doppler array using the ambiguity function
[20], digital phase mixing of each Doppler down to baseband
before decoding, use of weighted or tapered decoding filters
[49], and code extension of the transmitted code for those cases
in which a noncyclic code is being used [7].

2) Long-Code: The ideal long-code experiment uses a truly
random code, i.e., one whose autocorrelation function is zero
for lags of one baud or greater. This ensures that there is no
deterministic clutter such as that giving rise to the standard-code
leakage effects [compare Fig. 3(a) and (c)]. However, given the
nature of long-code decoding, one must accept the fact that the
full echo power from all the other (unsynchronized) delays will
appear as a random, noise-like self-clutter at any given delay.
(Hagfors and Kofman [33], [34] refer to this component as “self-
noise” rather than “self-clutter”). For the usual one-sample/baud
decoding, this clutter component has a white spectrum between
the fy = £1/2b Nyquist frequencies. This just adds a white-
noiselike clutter on top of the white system noise. The clutter
power level at delay k is given by

i#k j j

19)

which is obtained by integrating the differential clutter of (49)
(Appendix I-B) over delay-Doppler cells. The second term of
(19) gives an approximate correction for same-delay clutter,
where

2 b

= 17 XT7f' 2dT
sz })/2| ( ])|

(20)

Uj

is the fractional overlap between the squared ambiguity func-
tions of adjacent delay bins. Ignoring this small correction, we
can define a general clutter-to-noise ratio

CIN=bAFY > (S/N)i- @1)

Since the clutter spectrum is white, noise subtraction remains
a simple matter of estimating and subtracting a mean baseline
level. (Baseline subtraction is more complicated if running in
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unmatched/multisample mode, as the self-clutter spectrum in
that case is not white.) Because of the small variation in clutter
level among the different delays (from the different same-delay
clutter contributions), it is best to do a separate baseline estimate
and subtraction for each delay. Also, the fact that the clutter ap-
pears as additive noise means that its contribution must be cor-
rected for in any noise-based calibration (Section III-F). Finally,
note that whereas the system noise spectra from different de-
lays are uncorrelated, the clutter spectra from adjacent delays
are slightly correlated. The overlap between the squared ambi-
guity functions of adjacent delay bins represents that portion
of clutter power that is completely correlated between the two
bins. It follows that the correlation coefficient p for the clutter
between adjacent delay bins is p = u?, where u is given by (20).
This correlation is small, with p = 1/64 at f = 0.

E. Detectability and Resolution

In radar astronomy, as in radio astronomy, one distinguishes
between S/N, which is the ratio of signal and noise power
levels, and detectability D, which is the ratio of the signal (echo)
power to the root-mean-square statistical fluctuation of the noise
about the mean noise level. It is D, rather than S/N, that deter-
mines the quality of a delay-Doppler measurement.

1) Standard: Since successive realizations of the
delay-Doppler array are statistically independent, one has
VvarN 1 _ 1 22)
N Vi /Lip Vi Af

where tint / L+p is the number of incoherent summations (looks)
over the integration time ;¢ . Then, the detectability D is given
by the radiometer equation

D,: = —— — .\/t:. . A N).:
() /—arN - tmt f(S/ )zg (23)

which gives D o« by/Af from (15) if Sj; is not changing
with b (i.e., the echo structure is either resolved out or fairly
dense and homogeneous). This shows the basic tradeoff be-
tween detectability and resolution. The frequency resolution
Af can be easily adjusted in the off-line analysis to strike a
reasonable compromise, either by adjusting L; in the coherent
analysis or by doing a high-resolution coherent analysis and
then smoothing back in Doppler. One does not have the same
after-the-fact flexibility in the delay dimension. Let us assume
that there is some preferred baud b that gives a good compro-
mise between detectability and resolution for our purposes.
Then, it is easily shown (Appendix III) that if one observes with
a shorter baud b/ and then does an m-point delay smoothing
of the delay-Doppler array, the detectability is /m worse
than if one had used the longer baud b to begin with. In other
words, in standard delay-Doppler one always pays a penalty
for “overresolution,” i.e., for using a baud that is shorter than
the delay resolution to which one ultimately smooths.

2) Long-Code: For the long-code case with self-clutter in-
cluded, the detectability is given by

Dij = Sij _ VI AT (S/N)sj
Y Vvar N + var C 1+ (C/N)? )

(24)
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TABLE III
CLUTTER-TO-NOISE RATIOS FOR SELECTED TARGETS. VALUES ARE
CALCULATED FOR THE UPGRADED ARECIBO S-BAND RADAR ASSUMING
MINIMUM TARGET RANGE (INFERIOR CONJUNCTION OR OPPOSITION) AND
USING THE TABULATED BAUD (SEE TEXT). THE ENTRY FOR IAA REPRESENTS
THE GRAIN-COMA ECHO FOR COMET IRAS—ARAKI-ALCOCK

Target Baud b (ps) (C/N)oc (C/N)sc
Mercury 10 0.56 0.047
Venus 10 150 10
Mars 10 5.1 1.4
Ceres 100 0.002 0.0002
Kleopatra 100 0.004 0.0002
IAA (coma) 100 0.61 0.009
To 250 0.011 0.002
Europa 250 0.045 0.069
Ganymede 250 0.071 0.102
Callisto 250 0.033 0.038

The clutter not only reduces the detectability, but also can alter
the baud selection strategy. It is easily shown (Appendix III) that
once clutter begins to dominate the noise (C'//N > 1), it pays to
deliberately overresolve and then smooth back in delay. This is
because overresolution spreads the clutter power over a larger
bandwidth and thus lowers the clutter spectral density relative
to the noise spectral density (which remains the same). In fact,
when clutter starts to dominate, the optimal strategy is to overre-
solve until the clutter and noise levels are equalized (C'/N = 1),
as was pointed out in [34]. However, even with optimal over-
resolution, the detectability is still a factor of \/2C'/N worse
because of the clutter (Appendix III). Also, since the OC and
SC radar cross sections (and C/N ratios) can be quite different
(Table III), one cannot optimally overresolve in both polariza-
tions simultaneously.

F. Calibration (Radar Cross Section)

1) Standard: Radar calibration is normally done by com-
paring the echo power S with the noise baseline level V. One
can estimate IV by fitting a flat baseline to the Doppler spectra
from the echo-free delays. This is then subtracted from the
delay-Doppler array to give an estimate of .S;;. From (15) we
have

Si; =b"'"N, Y, ' Z7(S/N)y;

~(3/2)b7 kT, Y, (S/N)ij- (25)
Here we have used Z = 2/3 from (13) and N, = kT, where
T, is system temperature and k is Boltzmann’s constant. Then,
using the radar equation and (25), S;;b A f can be normalized
to a radar cross section array

oij =g ' SibAf = (3/2)g7 KT, Af Y H(S/N)ij. (26)
Here g is a radar-equation factor
P 2y2
_ BGEA 27

9= (4n)3R?
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where P; is transmitter power; GG is antenna gain; A is radar
wavelength; and R is target distance.

For calibration purposes, (26) can be treated as the radar
cross-section contribution from a rectangular resolution cell
measuring b x Af. This implies that one can get the target’s
total cross section o from

azzzj:aij.

i

(28)

Likewise, one can synthesize a normalized version of the total
target Doppler spectrum from

0j = E Tij.
%

This synthetic full-target Doppler spectrum can be useful for
doing simplified scattering-law fits, although its S/N is signif-
icantly less than that of a spectrum from a Doppler-only (un-
modulated transmission) observation. (Note that in the event of
Doppler aliasing, the o estimate from (28) will be biased low,
since the correction for the code filter Y will be underestimated
for the aliased frequencies.)

2) Long-Code: Clutter makes long-code calibration some-
what different from standard calibration. If one calibrates
against system noise, then care must be taken to distinguish
true system noise from clutter noise. There are two ways to do
this, as discussed in [11].

(29)

1) Measure the true (clutter-free) system noise level by
pointing off-source or by recording echo-free noise after
the last transmission has been received.

2) Estimate the clutter level by taking the total (baseline sub-
tracted) echo signal power and spreading it evenly over
the full 1/b Nyquist bandwidth, then subtract this clutter
level from the total (system + clutter) noise level (at
echo-free delays) to get the system noise level N.

With N determined, one has

Si; =b"'N, Z7'(S/N)i; = b 'kT. Z7 ' (S/N)i; - (30)
so the radar cross-sectional array o;; is computed from
oij =9 ‘"KL Af Z7H(S/N)ij (31)

where one can either compute Z from (12) or use Z = 2/3 (if
B < 1/b). This 0;; array can be used to compute a total cross
section from (28) and a total Doppler spectrum from (29).

One can calibrate the clutter-to-noise ratio in a similar fashion
using (21), (28), and (31). This gives (in the B < 1/b approxi-
mation)

C/N = (2/3)gob/kT, (32)

which is just the ratio of the clutter spectral density (2/3)gob to
the noise spectral density kT, or the ratio of the total clutter
power (2/3)go to the total noise power kT /b. This can be
useful for predicting and optimizing C'/N for particular situ-
ations. Table IIT lists maximum C/N for various targets based
on this equation. The bauds selected for Table III would give a
reasonable compromise between resolution and S/ N but are not
necessarily optimized for C'//N . Note also that since the OC and
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SC cross sections will be different, one cannot optimize both po-
larizations simultaneously.

IV. LONG-CODE APPLICATIONS
A. Mars

Mars is a natural candidate for the long-code method, being
highly (but not grossly) overspread and exhibiting strong spa-
tial variations in radar reflectivity that show up well in full-disk
radar images. The first long-code observations were made by
Harmon and colleagues with the Arecibo S band radar during
the 1990 Mars opposition, and these were followed up with
additional observations during the 1992-1993 opposition [10],
[11], [22]. Fig. 5(a) gives an example of an SC delay-Doppler
array from December 1, 1990, showing the echo features asso-
ciated with rough surfaces (mostly lava flows) in Elysium and
Amazonis. The 1990-1993 observations were made using the
canonical matched-filtered, one-sample/baud setup with baud
lengths of either 100 us (1990) or 70 ps (1992-1993). Even
with these rather long bauds, the Mars echoes suffered from
low detectability, an unavoidable result of the low signal spec-
tral density from the large Doppler spreading. Self-clutter also
had a significant effect, with C'/N for the SC echo ranging from
0.18-2.5 [2.0 for the echo in Fig. 5(a)].

The first opportunity to observe Mars with the upgraded
Arecibo radar is the 2005 opposition. Planned observations
will use shorter (~10 us) bauds in order to improve resolution,
reduce clutter noise, and exploit the enhanced sensitivity of the
new radar. However, clutter may still present a detectability
problem for the OC polarization (Table III).

B. Mercury

Although the Mercury overspreading factor is small (Table I),
the long-code method is useful for full-disk imaging, as it gives
cleaner delay-Doppler images (Fig. 3) at the expense of negli-
gible (for SC) to modest (for OC) noise increases from clutter
(Table III). Long-code imaging results using the preupgrade
Arecibo S band radar were reported in [35]-[37] based on
100-ps-baud observations made in 1991-1992. Postupgrade
long-code observations with 10-20-us bauds were made in the
summers of 2000 and 2001 [38]. Fig. 3(c) and (d) shows the
delay-Doppler arrays from one of the 2000 dates. Notable in
these images are a prominent rayed crater (known as feature
“A”) at intermediate delays and the putative north polar ice
features at the tail of the echo. The polar features have also
been imaged with the Goldstone X band (8.4 GHz) radar using
the long-code method [39].

C. Outer Planet Satellites

The degree of overspreading of the Galilean satellites
(Table I) makes them logical candidates for long-code radar.
The first delay-Doppler detections of the Galilean satellites
were the 100-ps long-code observations of Ganymede and
Callisto made at Arecibo in 1992 [40]. Given the weakness
of the echoes with the preupgrade system, these observations
were intended for ranging (for ephemeris refinement and
orbital dynamics studies) rather than reflectivity mapping.
The range estimates were obtained by cross-correlating the
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Fig. 5. Examples of delay-Doppler arrays from Arecibo long-code
observations. (a) Mars and (b) Europa. The delay axis extends (a) 26 ms or
(b) 13 ms, and the Doppler axis extends (a) 10 kHz or (b) 1.25 kHz. The echo
Doppler bandwidth B was either (a) 7.835 kHz or (b) 1.014 kHz. The Mars
image is a 6.7-min average from December 1, 1990 (sub-earth point at 9.7°S,
188.1°W). The Europa image is a 66-min average from November 7, 1999.
The baud was 100 gs in both cases.

entire delay-Doppler array with a model echo template. This
optimized approach to long-code ranging [50] has potentially
useful applications for other overspread outer planet satellites
(e.g., Titan), even when the echoes are too weak for useful
imaging. (Standard-code ranging of overspread targets using
aliased templates can also be done, although the code-filter
attenuation of the wings will reduce the quality somewhat.)

The recent Arecibo upgrade has yielded improvements in the
quality of long-code delay-Doppler on the Galilean satellites
and has even enabled some coarse reflectivity mapping (albeit
with a north—south ambiguity). The new system was used to
make the first delay-Doppler detections of Europa in 1999. An
example of a Europa echo is shown in Fig. 5(b). This observa-
tion was made with a relatively short (100 us) baud for ranging
purposes and at a time when the radar was only transmitting
at half power. Observations in 2000 using longer (250-500 ps)
bauds and full power have since been made for reflectivity map-
ping of Europa, Ganymede, and Callisto [41].

D. Asteroids

Observations of near-earth asteroids (NEAs) and mainbelt
asteroids (MBAs) make up an increasingly important compo-
nent of the radar programs at Arecibo and Goldstone. Moreover,
thanks to improved systems, an increasing fraction of asteroid
work is being devoted to delay-Doppler observations. NEAs
such as Toutatis and Castalia are small objects with I < 1
(Table I). Hence, standard delay-Doppler using short bauds is
the method of choice for NEAs. Where the long-code method
is more appropriate is in imaging the larger MBAs. Using 7 h
as a typical rotation period for medium to large MBAs (r >
100 km) gives F' > 0.5 for these objects, indicating that most
are either overspread or close to it. Thus, the long-code method
offers a safer and more flexible method for imaging and ranging
MBA:s in this size class. Recently, the Arecibo long-code system
was used to image the medium-size MBA 216 Kleopatra [42].
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Work has also commenced at Arecibo on long-code imaging of
the largest MBAs (Ceres, Pallas, and Vesta), all of which are
significantly overspread (Table I). Doing delay-Doppler map-
ping on these large MBAs remains difficult because of their
weak echoes, although the Arecibo upgrade has brought at least
crude imaging and optimized ranging within reach. The first
delay-Doppler imaging of Ceres was done recently using the
Arecibo long-code system [43], and more observations of this
and other large MBAs are expected in the future.

E. Comets

Radar observations of a close-approaching comet can yield
a narrow-band Doppler echo from the nucleus, a broad-band
echo from a cloud of large (centimeter size) grains in the inner
coma, or both [51]. All comet radar detections to date have been
made in the Doppler-only mode, so obtaining a delay-Doppler
detection of a comet (and, ultimately, high-resolution imaging
of anucleus) is one of the prime goals of radar astronomy. Since
comet nuclei are highly underspread, standard delay-Doppler
is preferred over long-code for nucleus imaging. On the
other hand, long-code offers the best method for imaging the
grain-coma echo. With their large Doppler bandwidths, the
coma echoes for comets IRAS—Araki—-Alcock (B = 350 Hz)
and Hyakutake (B = 3 kHz) would have been overspread for
grain cloud diameters in excess of 400 km and 50 km, respec-
tively. Since the grain comae for these comets are thought likely
to have been larger than these values (based on reasonable grain
ejection velocities and lifetimes as well as shape modeling of
the IRAS—Araki—Alcock echo), we conclude that these coma
echoes must have been significantly overspread. For certain
close-approaching comets then, the best strategy may be to do
both standard and long-code observations.

V. SUMMARY AND CONCLUSION

Delay-Doppler radar comprises a suite of methods de-
vised to handle various degrees of echo dispersion F'. These
methods include standard interpulse/intercode, long-pulse/fre-
quency-step, and long-code, all of which are in current use. The
standard method is the most efficient for underspread targets
or when the overspreading is small enough to be ignored.
Long-pulse methods are appropriate for any grossly overspread
targets for which F' delay-Doppler cells suffice and for which
fewer than F' delays are desired; in its CW frequency-step
version, this method is still used to map Saturn’s rings. The
long-code method is finding increasing use for the intermediate
case of moderate to large overspreading where more than F
delay-Doppler cells are required and where placing more than
F' delays on the target is acceptable. The main reason for
using long-code is, of course, to eliminate overspread aliasing.
Secondary advantages include avoidance of deterministic
self-clutter, range ambiguity, and code filtering (although, as
pointed out earlier, techniques exist for dealing with delay
sidelobes and range ambiguity in standard delay-Doppler). The
main drawbacks of the long-code method are clutter noise, baud
filtering, and slower data processing. Of these, clutter noise is
the only fundamental problem, but one that can pose serious

1913

limitations in some applications. Even with optimal overreso-
lution, one suffers a factor of /2C/N loss in detectability in
clutter-dominated cases. Moreover, for highly specular targets
like the terrestrial planets, the inability to optimize the clutter
for both OC and SC polarizations simultaneously can present
a serious problem. Recognizing this, Hagfors and Kofman [33]
suggested a clever polarization-switching scheme to reduce
long-code OC clutter by nulling out the strong specular glare
at the echo’s leading edge. Alternative methods should also
be considered that are not based on the long-code principle
at all and for which the self-clutter is inherently smaller. One
possibility is coherent frequency stepping, a CW method that
(as in the Saturn rings experiment) uses transmitter frequency
stepping to synthesize pulses, but which maintains phase coher-
ence between steps to enable interpulse spectral analysis. Such
a method might be useful for future Mars mapping studies.

APPENDIX [
DELAY-DOPPLER PROCESSOR POINT-ECHO RESPONSE

Here it is assumed that the delay-Doppler processing is done
on a data time series (time = t) that is complex-sampled once
per baud b. We also assume that the spectral analysis is done
in the customary fashion, i.e., using an unweighted (Bartlett)
periodogram.

A. Standard

For our matched-filter delay-Doppler processor, the differen-
tial contribution to S;; + C;; from a point echo of complex am-
plitude a(7, f) is given by the periodogram

> (33)

! /
Sii(r, )+ Ci(r, f)
where () denotes expectation value, and G is the cross correla-

Li—1
) < > Glri—r+mp, f)a(r, f)e>rIime
m=0
tion
G(r, f) = e1(t) * {[e2(t) * IL(t/b)] 7" % 1L(t/0) } .
Here ¢;(t) is a single cycle of the (§-sequence) code of length
L.; co(t) is the repeating code; II(x) is the unit rectangle (=1
for |z| < 1/2,= 0 for |z| > 1/2); and % and * denote correla-
tion and convolution, respectively. (Note that c; * II represents
the transmitted waveform; e*2"/* is the echo Doppler carrier;
and the second *II convolution gives the action of the analog
matched filter.) Using the associative property of convolution

and the identity [g(t) * h(t)]e?2™Ft = [g(t)e?2™*]* [h(t)e?2™F1],
we have

G(r, ) = ci(=1) * {lea(t) xT1(1/)] e «H(t/b)}
= [cf(—t) * co(t)e®™ ] x [TI(t/b)e™ " « T1(t/b)]

2
1

L;

(34)

= [c1(t) % ea()e* ™M) 5 x(7, f) (35)
where
x(7, f) =TI(t/b)e?>™ It « TI(t/b)
= A(7/b) sinc([b — |7|]f) eI (36)
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is the single-pulse ambiguity function. Doing the correlation,
we then have
*X(7, f)

25 T—np)
(37)

where c.t. represents a clutter term, and § is the Dirac delta
function. Ignoring clutter and a phase factor then gives

.—1

Z i27rf(lb+‘r)+c't'
Le 1=0

= VH(L, bf) Y €™ x(r —np,f)  (38)
where
L—1 . 2
1 il sin Lz
Tz ;e <Lsin7r:1:> 39)

is the familiar “grating” or Bartlett spectral window function.
Putting (38) into (33) gives

L;—1

I Z Z i2m(fn—fym)p

m=0 n
>. (40)

Changing the index variable to k = n — m then gives

Sz{j(’rv f) = H(chf <

2

x(1i =7 = np+mp, f)a(r, f)

Li—1
= L 27 (f—f;)mp i2n fk
S:](T7 f)—H(L( bf)<L—tn§::Oe ( ) Izk:e P

2

'X(Ti - T = kp7 f) a(Tv f)
H(Ly, plf — f3])
S 2 Ik (1 r—kp, ) a(r. f)

k

=H(Le, bf)

< )
The k-summation in (41) represents the delay ambiguity from
the repeating code. (This derivation ignores end effects on the
k # 0 ambiguity contributions from the finite length of the
transmission.) Using the fact that there is no overlap between

k-surfaces (because of the narrowness of x in delay), and
defining S’(7, f) = (|a(r, f)|?), then

Sfj(ﬂ f)=H(Le, bf) H(L:, p[f - f;])
S Ix(ri == kp, PP S'(7, ).
k

(41)

(42)

B. Long-Code

For the long-code processor, we have

T, f) + Cl(7_7 f)

< L,—-1

Z W (mb; 7i—, f)a(r, f)e 2™ fimb
Lt m=0

Sii(

2

> (43)
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where W is the lagged-product time series
Wt 7, f) =" () {[e(t + ) # TL(e/0)] €274 s T /1) |
=c*(t) {[c(t + 7)™« x(r, f)}eiz’TfT. (44)

Writing the 6-sequence long-code c(t) as ¢,,, = c¢(mb) and
dropping the trailing phase factor in (44), we have

-7, f) = c;kncm+n ei27rf(m+n)bX(r7 f)
i27rf(m+n+l)bx(

W (mb; ;

r—1b, f)
(45)

*
+ Cm Cm+n+l1€

where n is the integer quotient of (7; — 7)/b;r =7, — T —nb
is the remainder; and [ = sgu(7; — 7) = 1. For the case
n # 0, both terms of (45) represent clutter terms. For n = 0,
the second term is a clutter term, while the first term represents
signal. Substituting this signal term into (43) gives

)

Sz{j(Ta f)

.

1 L;—1

=3 e @2 EM (i, f)a(r, )
t

" m=0

= H(Ly, bf = fi]) Ix(ri =7, /)P S'(7, f). (40)
Putting the clutter terms of (45) into (43) gives
= 2
C{j(’l’, f) = < L_ Crncm+n ei2ﬂ(f_fj)mb > |X(T7 f)|2
t m=0
= 2
+ < I Z CE Contntl ei2m(f=fi)m >
m=0
x(r =1, )| S'(r, f) (47)
forn # 0 and
| Lemt 2
/ — . * 27 (f—f;)mb
C (T7 f) < Lt 7n2::0 cmcm+le >
x(ri =7 = b, )I?S'(r, f) (48)

for n = 0. Since the () factors in (47) and (48) are all equal to

1/L; = bAf, then
bAS [Ix(r, )I?
Ci;(r. f) = +x(r =16, fI?] S'(7, ), n#0
bAfIx(ri =7 =1, IPS'(r, f), n=0.
(49)

APPENDIX II
BAUD FILTER IDENTITY

The identity in (12) gives a computationally convenient
Fourier transform expression for the baud filter. One can prove
this by starting from Parseval’s theorem

= [ npar =g [1F )

YA (50)
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where F is the Fourier transform operator. Then, using the
Fourier shift and convolution theorems, one has

205 = [ Fanem) e e a

= [ Isinclbr)sincls - 1) af

= %sincz(b f) *sinc?(bf) = %f{AQ(T/b)}
= % / A*(7/b) eI dr,

An alternative derivation in [46] gives the identity

/|X IZdT—/IXTO

from which (51) follows directly.

(SD

—27fT 4 (52)

APPENDIX III
OVERRESOLVED DETECTABILITY

We denote noise and clutter for the preferred baud b by N,
C, for the shorter observing baud b/m by N’, C’; and for the
final m-point delay-smoothed array by N, C”. Then, for the
standard method the overresolved noise variance is

var N” = mvar N’ = mvar N.

(53)
Then, since S” = S, the overresolved detectability is given by

varN D
var N~ /m’

For the long-code case, the variance of the final noise-plus-
clutter background (ignoring the small interdelay clutter corre-
lation p) is given by

D'=D (54)

var (N + C") =mvar N' + mvar C’

=mN?/n + C?/mn. (55)
Here we have used the relations var N’ = var N = N2 /n and
var O = var(C/m) = C?/m?n, where n is the number of
looks. Setting the derivative of (55) with respect to m equal to
zero gives m = C/N as the optimal overresolution factor to
minimize the variance. One then has C' /N’ = (C/N)/m =1,
which says that one optimizes by overresolving until clutter and
noise are equalized. Putting m = C/N into (55) and dividing
by var N gives

var (N + C")

var N

= /2C/N

as the factor by which clutter reduces the detectability in clutter-
dominated cases with optimal overresolution.

(56)
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